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Red-Black Trees

• AVL trees and (2,4) trees have very nice 
properties, but:

– AVL trees might need many rotations after a 
removal

– (2,4) trees might require many split or fusion 
operations after an update (insertion or deletion).

• Red-black trees are a data structure which 
requires only 𝑶(𝟏) structural changes after an 
update in order to remain balanced.

Data Structures and Programming 
Techniques

2



Definition

• A red-black tree is a binary search tree with 
nodes colored red and black in a way that 
satisfies the following properties:
– Root Property: The root is black.

– External Property: Every external node is black.

– Internal Property: The children of  a red node are 
black.

– Depth Property: All the external nodes have the same 
black depth, defined as the number of black ancestors 
minus one (recall that a node is an ancestor of itself).
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Definition (cont’d)

• Red-black trees will be used for implementing 
maps so they will not be allowed to have 
duplicate keys.
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Example Red-Black Tree
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From (2,4) Trees to Red-Black Trees

• Given a (2,4) tree, we can transform it into a red-black 
tree by performing the following transformations for 
each internal node 𝑣:
– If 𝑣 is a 2-node, then keep the (black) children of 𝑣 as is.

– If 𝑣 is a 3-node, then create a new red node 𝑤, give 𝑣’s 
first two (black) children to 𝑤, and make 𝑤 and 𝑣’s third 
child be the two children of 𝑣 (the symmetric operation is 
also possible; see next slide).

– If 𝑣 is a 4-node, then create two new red nodes 𝑤 and 𝑧, 
give 𝑣’s first two (black) children to 𝑤, give 𝑣’s last two 
(black) children to 𝑧, and make 𝑤 and 𝑧 be the two 
children of 𝑣.
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From (2,4) Trees to Red-Black Trees 
(cont’d)
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Example (2,4) Tree
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Corresponding Red-Black Tree
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From Red-Black Trees to (2,4) Trees

• Given a red-black tree, we can construct a 
corresponding (2,4) tree by merging every red 
node 𝑣 into its parent and storing the entry 
from 𝑣 at its parent.

• The two children of 𝑣 become left and right 
child of 𝑣 in the new 3-node or 4-node.
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Example Red-Black Tree

Data Structures and Programming 
Techniques

11

12

5

3

4

1310

15

17

14

7 11

6 8



Corresponding (2,4) Tree
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Proposition

• The height of a red-black tree storing 𝑛 entries 
is 𝑂(log 𝑛).

• Proof?
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Proof

• Let 𝑇 be a red-black tree storing 𝑛 entries, and let ℎ be the 
height of 𝑇. We will prove the following:

log(𝑛 + 1) ≤ ℎ ≤ 2 log(𝑛 + 1)
• Let 𝑑 be the common black depth of all the external nodes 

of 𝑇. Let 𝑇′ be the (2,4) tree associated with 𝑇, and let ℎ′ be 
the height of 𝑇′.

• Because of the correspondence between red-black trees 
and (2,4) trees, we know that 𝒉′ = 𝒅.

• Hence, 𝑑 = ℎ′ ≤ log(𝑛 + 1) by the proposition for the 
height of (2,4) trees. By the internal node property of red-
black trees, we have 𝒉 ≤ 𝟐𝒅 (the upper bound for the 
height is reached when every black node has only red 
children). Therefore, ℎ ≤ 2 log(𝑛 + 1).
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Proof (cont’d)

• The other inequality, log(𝑛 + 1) ≤ ℎ follows 
from the properties of proper binary trees and 
the fact that 𝑇 has 𝑛 internal nodes.
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Search in a Red-Black Tree

• The algorithm for searching for the entry with 
key 𝑘 in a red-black tree is exactly the same as 
the algorithm we presented for searching in a 
binary search tree.

• The worst-case complexity of this algorithm is 
𝑶(𝐥𝐨𝐠 𝒏) where 𝑛 is the number of entries in 
the tree.
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Updates

• Performing update operations (insertions or 
deletions) in a red-black tree is similar to the 
operations of binary search trees, but we 
must additionally take care not to destroy the 
color properties.

• For an update operation in a red-black tree 𝑇, 
it is important to keep in mind the 
correspondence with a (2,4) tree 𝑻′ and the 
relevant update algorithms for (2,4) trees.
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Insertion

• Let us consider the insertion of a new entry 
with key 𝑘 into a red-black tree 𝑇.

• We will start with a few examples of insertions 
into an initially empty tree.
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Initial Empty Tree
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Insert 4

• Easy.
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Insert 7

• Easy.
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Insert 12

• In this case, the resulting tree violates the internal property of red-
black trees. This problem needs to be fixed and we will see the 
details below.
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Insertion (cont’d)

• Let us present the details of the algorithm for inserting 
a new entry with key 𝑘 into a red-black tree 𝑇.

• We search for 𝑘 in 𝑇 until we reach an external node of 
𝑇, and we replace this node with an internal node 𝑧, 
storing (𝑘, 𝑖) and having two external-node children.

• If 𝑧 is the root of 𝑇, we color 𝑧 black, else we color 𝑧 
red. We also color the children of 𝑧 black.

• This operation corresponds to inserting (𝑘, 𝑖) into a 
node of the (2,4) tree 𝑇′ with external-node children.

• This operation preserves the root, external, and depth 
properties of 𝑇, but it might violate the internal 
property.
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Insertion (cont’d)

• Indeed, if 𝑧 is not the root of 𝑇 and the parent 𝑣 
of 𝑧 is red, then we have a parent and a child 
that are both red.

• In this case, by the root property, 𝑣 cannot be the 
root of 𝑇.

• By the internal property (which was previously 
satisfied), the parent 𝑢 of 𝑣 must be black.

• Since 𝑧 and its parent are red, but 𝑧’s 
grandparent 𝑢 is black, we call this violation of 
the internal property a double red at node 𝑧.
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Insertion (cont’d)

• To remedy a double red, we consider two cases.

• Case 1: the sibling 𝒘 of 𝒗 is black. In this case, the 
double red denotes the fact that we have created in 
our red-black tree 𝑇 a malformed replacement for a 
corresponding 4-node of the (2,4) tree 𝑇′, which has as 
its children the four black children of 𝑢, 𝑣 and 𝑧.

• Our malformed replacement has one red node (𝑣) that 
is the parent of another red node (𝑧) while we want it 
to have two red nodes as siblings instead.

• To fix this problem, we perform a trinode restructuring 
(αναδόμηση τριών κόμβων) of 𝑇 as follows.
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Trinode Restructuring

• Take node 𝑧, its parent 𝑣, and grandparent 𝑢, and 
temporarily relabel them as 𝑎, 𝑏 and 𝑐, in left-to-
right order, so that 𝑎, 𝑏 and 𝑐 will be visited in this 
order by an inorder tree traversal.

• Replace the grandparent 𝑢 with the node labeled 
𝑏, and make nodes 𝑎 and 𝑐 the children of 𝑏 
keeping inorder relationships unchanged.

• After restructuring, we color 𝑏 black and we color 
𝑎 and 𝑐 red. Thus, the restructuring eliminates 
the double red problem.
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Trinode Restructuring vs. Rotations

• The trinode restructuring operation we have 
just described corresponds exactly to the four 
kinds of rotations we discussed for AVL trees.

• Below we show graphically the four possible 
subcases of Case 1 for the nodes 𝑣, 𝑢, 𝑧 and 𝑤 
and the rotations that will restore the internal 
property.
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Trinode Restructuring Graphically

• Right rotation at 𝑢
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Trinode Restructuring Graphically 
(cont’d)

• Double left-right rotation at 𝑣 and 𝑢 (first a 
left rotation at 𝑣  then a right rotation at 𝑢).
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Trinode Restructuring Graphically 
(cont’d)

• Left rotation at 𝑢
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Trinode Restructuring Graphically 
(cont’d)

• Double right-left rotation at 𝑣 and 𝑢 (first a 
right rotation at 𝑣  then a left rotation at 𝑢).
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Insertion (cont’d)

• Case 2: the sibling 𝒘 of 𝒗 is red. In this case, 
the double red denotes an overflow in the 
corresponding (2,4) tree 𝑇′. 

• To fix the problem, we perform the equivalent 
of a split operation. Namely, we do a 
recoloring (αναχρωματισμό): we color 𝑣 and 
𝑤 black and their parent 𝑢 red (unless 𝑢 is the 
root, in which case it is colored black).
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Overflow
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Recoloring
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Recoloring vs. Trinode Restructuring

• The trinode restructuring operation involves a 
local restructuring of the tree (implemented 
by pointer manipulation) and changes in color.

• Recoloring only needs changes in color and 
the structure of the tree does not change.

• The term “recoloring” should not be used in 
the case of trinode restructuring although 
colors change in that case too.
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Insertion (cont’d)

• It is possible that, after such a recoloring, the double red 
problem reappears at 𝑢 (if 𝑢 has a red parent). Then, we 
repeat the consideration of the two cases. 

• Thus, a recoloring either eliminates the double red problem 
at node 𝑧 or propagates it to the grandparent 𝑢 of 𝑧.

• We continue going up 𝑇 performing recoloring until we 
finally resolve the double red problem (either with a final 
recoloring or a trinode restructuring).

• Thus, the number of recolorings caused by insertion is no 
more than half the height of tree 𝑇 (why?), that is, no more 
than log(𝑛 + 1) by the proposition we have proved about 
the height of a red-black tree.
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Example

• Let us now see some examples of insertions in 
an initially empty red-black tree.
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Initial Empty Tree
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Insert 4

• Easy.
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Insert 7

• Easy.
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Insert 12 – Double Red

• We are in Case 1. We will do a trinode restructuring (left 
rotation at 4).
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After Restructuring
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Insert 15 – Double Red

• We are in Case 2. We will do a recoloring.
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After Recoloring
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Insert 3

• Easy.
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Insert 5

• Easy.
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Insert 14 – Double Red

• We are in Case 1. We will do a trinode restructuring (double 
right-left rotation at 15 and 12).
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After Restructuring
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Insertion of 18 – Double Red

• We are in Case 2. We will do a recoloring.
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After Recoloring
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Insertion of 16 – Double Red

• We are in Case 1. We will do a trinode restructuring (double right-left rotation at 
18 and 15).
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After Restructuring
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Insertion of 17 – Double Red

• We are in Case 2. We will do a recoloring.
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After Recoloring – Double Red

• We are in Case 1. We will do a trinode restructuring (left rotation at 
7).
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After Restructuring
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Proposition

• The insertion of a key-value entry in a red-
black tree storing 𝑛 entries can be done in 
𝑶 (𝐥𝐨𝐠 𝒏) time and requires 𝑶 (𝐥𝐨𝐠 𝒏) 
recolorings and one trinode restructuring.
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Removal

• Let us now present how to remove an entry 
with key 𝑘 from a red-black tree 𝑇.

• Let us first see a few examples of removal 
from a given red-black tree.
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Initial Tree
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Remove 3

• Easy.
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After Removing 3
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Remove 14

• To remove 14, we find the key which follows 14 in the natural order of keys (15), 
move this key to the position of 14 and delete it from the tree.
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After Moving Key 15 and Deleting Its 
Node

• The resulting tree is no longer a red-black tree because the depth property has 
been violated for the external-node child of node with key 16.
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Question

• Can removing a red node from a red-black 
tree violate any of the properties of red-black 
trees?

Data Structures and Programming 
Techniques

63



Answer

• No!

• But please bear in mind the case when this 
node does not have any external nodes as 
children, hence we need to remove the 
successor or predecessor of this node, and 
this node might be black ☺ .
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Removal (cont’d)

• Let us now discuss the details of the algorithm for 
removing an entry with key 𝑘 from a red-black tree 𝑇.

• We proceed like in a binary tree search searching for a 
node 𝑢 storing such an entry.

• If 𝒖 does not have an external-node child, we find the 
internal node 𝑣 following 𝑢 in the inorder traversal of 
𝑇.  This node has an external-node child. We move the 
entry at 𝑣 to 𝑢, and perform the removal at 𝑣.

• Thus, we may consider only the removal of an entry 
with key 𝒌 stored at a node 𝒗 with an external-node 
child 𝒘.
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Removal (cont’d)

• To remove the entry with key 𝒌 from a node 𝒗 of 𝑻 with 
an external-node child 𝒘, we proceed as follows.

• Let 𝒓 be the sibling of 𝒘 and 𝒙 the parent of 𝒗. We remove 
nodes 𝒗 and 𝒘, and make 𝒓 a child of 𝒙.

• If 𝒗 was red (hence 𝒓 is black) then none of the properties 
of red-black trees is violated and we are done.

• If 𝒓 is red (hence 𝒗 was black) then the depth property is 
violated.  In this case we need to color 𝒓 black to restore 
the depth property.

• These two cases are shown graphically on the next slide. 
Note that there are also their symmetric cases when 𝑣 is 
the left child of 𝑥 (and similarly for 𝑟 and 𝑤).
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Graphically
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Removal (cont’d)

• Notice that in the previous slide we show 𝒓 as 
an external node or a node with only 
external nodes as children.

•  However, in general, 𝒓 might have children 
that are not external nodes. The previous 
discussion is valid for this case as well.
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Removal (cont’d)

• Finally, if 𝒓 is black and 𝒗 is black then we 
have a violation of the depth property again 
(at 𝒓).

• In this case, to preserve the depth property, 
we give 𝑟 a fictitious double black color.

• We now have a color violation, called the 
double black problem.
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Example

• Remove 12
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After Removing 12 – Double Black
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What is a Double Black?

• A double black in 𝑻 denotes an underflow in 
the corresponding (2,4) tree 𝑇′.

• To remedy the double-black problem at 𝑟, we 
proceed as follows.

• We will have 3 cases depending on the color 
of sibling 𝑦 of 𝑟 in the tree resulting from the 
deletion of 𝑣 and the color of 𝑦’s children.
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Removal (cont’d)

• Case 1: the sibling 𝒚 of 𝒓 is black and has a red child 𝒛. 
• Resolving this case corresponds to a transfer operation in 

the (2,4) tree 𝑇′.
• We perform a trinode restructuring: we take the node 𝑧, its 

parent 𝑦, and grandparent 𝑥, we label them temporarily 
left to right as 𝑎, 𝑏 and 𝑐, and we replace 𝑥 with the node 
labeled 𝑏, making it parent of the other two nodes.

• We color 𝑎 and 𝑐 black, give 𝑏 the former color of 𝑥, and 
color 𝑟 black.

• This trinode restructuring eliminates the double black 
problem because the path 𝑏 − 𝑐 − 𝑟 now contains two 
black nodes.
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Example of Case 1
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After the Restructuring (Right Rotation 
at 𝑥)

Data Structures and Programming 
Techniques

75

… 20 …
𝑏

𝑎

𝑟

30

20

10

40

𝑐
30  

40

……

10  



Alternative Version of Case 1

Data Structures and Programming 
Techniques

76

… 30 …
𝑥

𝑦 𝑟40

30

10

20𝑧

10   20

40

……



After the Restructuring (Double Left-Right 
Rotation at 𝑦 and 𝑥)
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Example (cont’d)

• The double black case after removing 12.
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Example (cont’d)

• We are in Case 1 (alternative version). We need to do trinode 
restructuring (double left-right rotation at 4 and 7).
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After Restructuring
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Removal (cont’d)

• Case 2: the sibling 𝒚 of 𝒓 is black and both 
children of 𝒚 are black. 

• Resolving this case corresponds to a fusion 
operation in the corresponding (2,4) tree 𝑇′.

• We do a recoloring: we color 𝑟 black, we color 𝑦 
red, and, if 𝑥 is red, we color it black; otherwise, 
we color 𝑥 double black.

• Hence, after this recoloring, the double black 
problem might reappear at the parent 𝒙 of 𝒓. 
We then repeat consideration of these three 
cases at 𝑥.
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Recoloring a Red-Black Tree that Fixes 
the Double Black Problem
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After the Recoloring
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Example

• Remove 18. 

• A black node is removed hence a double black is created.
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After Removing 18 – Double Black

• We are in Case 2. We will do a recoloring.

Data Structures and Programming 
Techniques

85

4

14

16

7 15

5



After Recoloring
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Recoloring a Red-Black Tree that 
Propagates the Double Black Problem

Data Structures and Programming 
Techniques

87

𝑥

𝑦 𝑟4020

40

20

3030



After the Recoloring
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Removal (cont’d)

• Case 3: the sibling 𝒚 of 𝒓 is red.

• In this case, we perform an adjustment 
operation (πράξη προσαρμογής) as follows.

• If 𝑦 is the right child of 𝑥, let 𝑧 be the right 
child of 𝑦; otherwise, let 𝑧 be the left child of 
𝑦. 

• Execute the trinode restructuring operation 
which makes 𝑦 the parent of 𝑥.

• Color 𝑦 black and 𝑥 red.
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Removal (cont’d)

• An adjustment corresponds to choosing in the red-black 
tree 𝑻 a different representation of a 3-node from the  
corresponding (2,4) tree 𝑇′.

• After the adjustment operation, the sibling of 𝑟 is black, 
and either Case 1 or Case 2 applies, with a different 
meaning of 𝑥 and 𝑦.

• Note that if Case 2 applies, the double black problem 
cannot reappear because the parent of 𝒓 is red.

• Thus, to complete Case 3 we make one more application 
of either Case 1 or Case 2 and we are done. 

• Therefore, at most one adjustment is performed in a 
removal operation.
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Adjustment of a Red-Black Tree in the 
Presence of a Double Black Problem
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After the Adjustment (Right Rotation 
at 𝑥)
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Example

• Remove 16.

• A black node is removed hence a double black will be created.
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After Removing 16 – Double Black

• We are in Case 3. We will do an adjustment (right rotation at 
14).
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After the Adjustment – Double Black

• We are in Case 2. Will do a recoloring.
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After the Recoloring
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Removal (cont’d)

• The algorithm for removing an entry from a 
red-black tree with 𝑛 entries takes 𝑶(𝐥𝐨𝐠 𝒏) 
time and performs 𝑶(𝐥𝐨𝐠 𝒏) recolorings and 
at most one adjustment plus one additional 
trinode restructuring. 
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Example

• Let us now see a bigger example with 
removals from a given red-black tree.
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Initial Tree
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Remove 3

• Easy.
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After Removing 3
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Remove 12

• A black node is removed hence a double black will be created.
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After Removing 12 – Double Black
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Double Black

• We are in Case 1. We need to do trinode restructuring (double left-
right rotation at 4 and 7).
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After Restructuring
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Remove 17

• Easy.
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After Removing 17
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Remove 18

• A black node is removed hence a double black is created.
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After Removing 18 – Double Black

• We are in Case 2. We will do a recoloring.

Data Structures and Programming 
Techniques

109

4

14

16

7 15

5



After Recoloring
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Remove 15

• Easy.
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After Removing 15
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Remove 16

• A black node is removed hence a double black will be created.
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After Removing 16 – Double Black

• We are in Case 3. We will do an adjustment (right rotation at 
14).
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After the Adjustment – Double Black

• We are in Case 2. Will do a recoloring.
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After the Recoloring
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Complexity of Operations in a Red-
Black Tree
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Summary

• The red-black tree data structure is slightly 
more complicated than its corresponding (2,4) 
tree.

• However, the red-black tree has the 
conceptual advantage that only a constant 
number of trinode restructurings are ever 
needed to restore the balance after an 
update.
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Readings

• M. T. Goodrich, R. Tamassia and Michael H. 
Goldwasser. Data Structures and Algorithms in 
Java. 6th edition. John Wiley and Sons, 2014.

– Section 11.6

• R. Sedgewick. Αλγόριθμοι σε C.

– Κεφ. 13.4
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